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ABSTRACT 

We show tha t  a semi-parallel hypersuff&ce of a sphere and a hyperbolic space 

is either flat, parallel or a rotat ion hypersurface whose profile curve is a helix. 

0. Introduct ion 

Semi-parallel submanifolds are defined as a generalization of parallel submani- 

folds, i.e. submanifolds with parallel second fundamental form. Parallel subman- 

ifolds M n of a real space form M"+P(c) have been classified by E. Backes and 

H. Reckziegel in [BR] and independently by M. Takeuchi in [T]. For arbi t rary c 

and for p = 1, the classification had already been done by H. B. Lawson, Jr. in 

[La]. For c -- 0 the classification was done by D. Ferus in [El]IF2] and in the 

case p = 1 and c = 0 by U. Simon and A. Weinstein in [SW]. 

Semi-parallel hypersurfaces of a Euclidean space have been classified by J. 

Deprez in [Del]. 

THEOREM 1: [Del] Let M "  be a semi-paral/d hypersurface of  ]g.+l. Then 

there are three possibilities: 

(1) M" is fiat, 
(2) M n is para21el, 

(3) M n is a round cone, or a product of a round cone and a linear subspace. 
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The same author has given a classification of semi-parallel surfaces of the Eu- 

clidean space [De2]. In [Lu] U. Lumiste has classified semi-parallel submanifolds 

of codimension 2 of the Euclidean space. In the present paper, we will give a 

classification of semi-parallel hypersurfaces of a real space form Mn+l(c) ,  c 7~ O. 

Note that  a semi-parallel hypersurface of a sphere is automatically a semi-parallel 

submanifold of codimension 2 of the Euclidean space. We give however an ex- 

plicit description of those hypersurfaces without using the classification in [Lu]. 

Our aim is to prove the following theorem. In the formulation of the theorem we 

make use of the hypersurface model for a space form, i.e. we consider Mn+l(c),  

c ¢ 0 as a hypersphere of R n+2' endowed with the Euclidean metric if c > 0 and 

with the Lorentzian metric if c < 0. 

THEOREM 2: Let M n be a semi-parallel hypersur[ace of a rea/ space form 

Mn+l(c)  with c ~ O. Then there are three possibilities: 

(1) n = 2 and M 2 is fiat, 

(2) M n is paralM, 

(3) There exists a totally geodesic M2(c), and a vector u in the linear subspace 

R 3 of R n+2' containing M2(c), such that M ~ is a rotation hypersurface whose 

prot~le curve is a u-helix lying in M2(c), and whose axis is u ±. Moreover, M n is 

intrinsically isometric to a cone. 

"Cone" is used in the sense of [Sz]. Rotation hypersurfaces and helices will be 

discussed in Section 2. This result has been announced in [Di], without details. 

A detailed description of the hypersurfaces (3) will be given here. We will also 

recall the classification of parallel hypersurfaces. Note that  the round cones in 

Theorem 1 are rotation hypersurfaces of the type (3) of Theorem 2. 

1. Pre l iminaries  

Let M n be an immersed hypersurfaee of a real space form M'~+~(c). We de- 

note the metric on Mn+l(c)  by ( , ) and the Levi Civita connection of 

(M"'~+I(c), ( , )) by V. The induced metric on M n is also denoted by ( , ) 

and the Levi Civita connection of (M n, ( , )) by V. Then we have the for- 

mulas of Gauss and Weingarten: 

V x Y  = V x Y  + h(X ,  V)~, 

V x ~  = - S X ,  

where X and Y are tangent vector fields, ~ is a unit normal vector field, h and 

S denote respectively the second fundamental form, which is a symmetric (0, 2)- 
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tensor field on M " ,  and the shape operator of ~, which is a (1,1)-tensor field on 

M" .  Note that  h and S are related by h(X, Y) = (SX, Y). 
M "  is called totally geodesic if S = 0. M n is called totally umbilical if S 

is proportional to the identity transformation, say S = M. If n > 1, then $ is 

constant and M "  has constant curvature c + $2. A hypersufface is called parallel 

if Vh = 0 and is called semi-parallel if R-  h = 0, where R .  h is the (0,4)-tensor 

field defined by 

(R. h)(X, Y, U, V) = (R(X, r ) .  h)(U, V) = -h(R(X, Y)U, V) - h(U, R(X, r )v ) .  

If Mr' is parallel, then M "  is also semi-parallel. 

A manifold M '~ is called semi-symmetric if R .  R -- 0, where R .  R is the 

(1,5)-tensor field defined by 

(R. R)(X, Y, U, V, W) = (R(X, Y). R)(U, Y)W 

= R(X, Y)R(U, V)W - R(R(X, Y)U, V)W 

- R(U, R(X, Y)V)W - R(U, V)R(X, Y)W. 

Every locally symmetric manifold (i.e. satisfying VR = 0) is semi-symmetric. 

Note that a parallel hypersurface is locally symmetric and a semi-parallel hy- 

persurface is semi-symmetric. Semi-symmetric manifolds are classified by Z. 

Szabo in [Sz]. As examples of non-locally symmetric, semi-symmetric manifolds 

he obtains the so-called elliptic, Euclidean and hyperbolic cones. They are de- 

fined as follows. Let M n-1 (e) be a real space form of constant curvature c. 

Let I : R + ---* R0 + be the identity function on R0 +. Then the warped product 

M n = R + x I M n-1 (c) is called an elliptic, Euclidean or hyperbolic cone if c > 0, 
c = 0 or c < 0. For more information on warped products of manifolds, the 

reader is referred to [O'N]. We only recall the definition. Let M1 and M2 be 

Riemannian manifolds with metrics gl and g2. Let M be the product manifold 

M1 x M2 and let ~rl : M ~ M1 and ~r2 : M ~ M2 be the natural projections. If 

f is a positive real function on M1, then we can define a Riemannian metric g 

on M "  by 

g(X, Y) --~ gi ((Trl).X, (71"1).Y) -3 t- f(Trm (p))2g2((7~2).X, (7/'2).Y), 

for X, Y E TpM. We call (M, g) the warped product of MI and M2 with warping 

function f and denote this by M1 x I M2. 

We now introduce the following model for the hyperbolic space. Let H"+l(c), 
c < 0, be the hypersurface of R n+2 given by 

2 2 2 = I / c ,  > 0} H"+l(c)  = {x  e R"+21x~ + ' "  + x .  + X . + l -  ~ .+2 ~.+2 • 
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If we endow H "+1 (c) with the Riemannian metric induced by the Lorentzian 

metric 
ds 2 d z ~ + . .  + d 2 . +  1 2 = . - -  d x n +  2 

on R n+2, then Hn+l(c) has constant negative curvature c. Then the totally 

umbilical hypersurfaces Hn+l(c) are given by the intersection of H"+l(c) and 
an affine hyperplane a .  The hypersurface is totally geodesic if a goes through the 

origin. If ¢ does not pass through the origin, then the hypersurface is hyperbolic, 

parabolic or elliptic if the angle between a and e,+l is smaller than, equal to or 
greater than ~r/4. We define a class of product hypersurfaces Sk(cl) x Hn-~(c2) 
with cl > 0, c2 < 0 and 1/cl + 1/c2 = 1/c by 

s%1)  × H"-%~) = {x ~ H"+'(c)Jd + . . .  + =I+, = 1/c ,} .  

These products, together with the totally umbilical hypersurfaces, are the only 
parallel hypersurfaces of tt"+1(c), up to isometrics of H"+l(c). We will denote 
in the following the metric ds 2 by ( , ). 

Now let S"+l(c), c > 0, be the hypersphere of radius 1/c of R "+2, centered at 

the origin, i.e. 

s"+'(c) = {~ ~ R"+~I=~ + . . . +  ~ . + ,  + x . + ~  

Then any totally umbilical hypersurface of S"+l(c) is given by the intersection 
of S"+l(c) and an afline hyperplane a and it is totally geodesic if a goes through 

the origin. Again we define a class of product hypersurfaces Sk(c~) × S"-k(c2) 
with cl > 0, c2 > 0 and 1/cl + 1/c2 = 1/c by 

sk(c1) X sn-k(c2) ~--- {X ~ S"+ ' ld  + . . .  + d,+, -- z/c, } .  

These products are together with the totally umbilical hypersurfaces the only 
parallel hypersurfaces of S"+l(c), up to isometrics of S"+l(c). 

The totally umbilical hypersurfaces of the Euclidean space E "+l are the afllne 

hyperplanes, which are totally geodesic, and the ordinary hyperspheres. The 

parallel hypersurfaces of E "+1 are the hyperplanes and the hyperspheres and 

products of alfme subspaces and spheres. 
The same statements can be made for totally geodesic and totally umbilical 

submanifolds of greater codimension. In general, the intersection of S "+1 (c) and 
H"+l(c) with alfme subspaces are called spheres, and they are the only totally 

umbilical submanifolds. Proofs of the given classification can be found in [C] 

and [Lal. 
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Since S is symmetric, there exists an orthonormal basis {ca ,e2 , . . . , en}  of 

T r M  for every p E M "  consisting of eigenvectors of S, i.e. Sei = )qei. The 

numbers ,~1, ,~2,. • •, )~,, are called the principal curvatures of M "  at p. If a basis 

{el, e2, • • •, e n } occurs in the following, it will always mean a basis of eigenvectors 

of S. Then the equation of Gauss states that  

(1.:) R(ei,e~) = uii ei A e~ , 

where v 0 = c + )~iA i and A associates to two vectors X,  Y E TpM an endomor- 

phism X A Y of TpM by 

( x  ^ Y ) z  = (Y, z ) x  - (x ,  z )Y.  

According to JR, lemma 2.1] there exist continuous functions A1, A2, . . . ,  A,, on 

M" ,  such that  for every p E M " ,  Al(p), A2(p), . . . ,  An(p) are the eigenvalues of 

Sp. The following proposition can be proved straightforwardly. 

PROPOSITION 2.1: For a hypersurface M n of Mn+l(c) the following conditions 

are equivalent: 

(1) R .  h = O, i.e. M'* is semi-paraIlel, 

(2) at each point p E M "  the shape operator has the following form: 

s ,  = 

with A# + c = O, or A = #. 

A 

A 
p 

# 

2. Rotation Hypersurfaces and Helices 

Rotation hypersurfaces: In this section we briefly recall what is a rotation hy- 

persurface of a real space form M"+l(c)  with c # 0 following [CD]. We always 

consider M"+l(c)  as a hypersphere in (R "+2, ds2). Let ps  be a 3-dimensional 

linear subspace linear space of R "+2 that  intersects Mn+l(c).  We denote the 

intersection by M2(c); if c < 0 we take only the upper part. Let p2 be any 

linear subspace in ps .  We recall that  any isometry of M "%+1(c) is the restriction 

to M"+~(c) of art orthogonal transformation of (R "+2, ds2), and conversely. Let 
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o ( e  2) be the group of orthogonal transformations (with positive determinant) 

that leave p2 pointwise fixed. We take any curve ct in M 2 ( c )  which does not 

intersect p2. The orbit of a under O(P  2) is called the rotation hypersurface 

with profile curve a and axis p2. The orbit of a(s) for a fixed s is a sphere, 

and if c < 0, then this sphere is elliptic, hyperbolic or parabolic according to p2 

respectively being Lorentzian, Pdemannian or degenerate. 

In order to give a parametrization of a rotation hypersurface of the different 

types, we introduce the vector tt E p3 such that p2 coincides with u j- = {v E 

p3 I (v, u) = 0}. We can always assume that u has length 1, - 1  or 0, according to 

p2 respectively being Lorentzian, Riemannian or degenerate, and that (u, a) > 0. 
Let 6 = (u, u). We define the map Q as the orthogonal projection of pa on u j- if 

6 # 0 and as the identity map of pa if 6 = 0. Further, let p , - 1  be the orthogonal 

complement of pa in R "+2 and let P"  be the linear space, spanned by p , - 1  and 

u. If 6 = 1, resp. 6 = -1 ,  then P"  is Riemannian, resp. Lorentzian, and we 

can define a mapping ~ of M n-1(5) into P"  by considering M n-1 (5) as a unit 

hypersphere in pn. If  6 = 0, then we can define a mapping ~b of Mn- l (0)  into 

pn by identifying M"- I (0 )  and pn-1 and defining 

1 
= p -  

Then a parametrization of the rotation hypersurface of a around the axis p2 is 

given by 
= + 

If we assume that s is the arc length of a, then it follows immediately that 
the rotation hypersurface M "  is intrinsically the warped product U × p M "-1 (5) 

where U is an open interval of R and p is defined by p(s)  = (a ( s ) ,  u), see [CD, 

(3.9)]. 
The second fundamental form of M" is given by 

a a p" + cp 
( 2 . 1 )  = - - 

and 

(2.2) h ( X , Y )  = 
X/~ - cP 2 - ¢2  

P 
(X,Y) 

for X and Y tangent to M"-I(6) ,  see [CD,(3.10)]. 
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Helices: Let R s be endowed with the Eucl idean or  Lorentz ian  metr ic  and  let u 

be any vector  in R s. Let a be a nondegenera te  curve in R s, i.e. ( a  I, a I) # 0. 

We then can assume tha t  a is parametr ized  by arc length. We say tha t  a is a 

u-helix if (a  ~, u) is constant .  

Let M 2 (c) be a hypersphere  in R s like above and let a be a u-helix which lies 

on M2(c) .  T h e n  we can give a paramet r iza t ion  of a as follows. 

Case 1: c > 0. In  this case we have a helix in Eucl idean space, lying on a 

sphere. These  curves are also considered in [BL, p. 49]. We can assume tha t  

u = el and  tha t  a is no t  a circle in a plane z l  = D.  T h e n  a has as arc  length 

paramet r iza t ion  : 

a l ( s )  = as, 

~ , ( s )  = ( : / c  -- a~, ' )  ½ sin(C(,)) ,  

~3(~) = ( l / c  -- a ' ,  2) ½ cos(¢( , ) ) ,  

where 0 < a < 1 and  ¢ is defined by 

1 f 0 "  ((1 - , 2 ) / c -  ,2)½ ¢(*) = ~ 1 / c -  ,2 d,. 

Note  tha t  a is defined on U = ]0, "-  "\(l~-~-~') ½ [. 

Case 2: ¢ < 0 and  (u, u) > O. Here we can assume tha t  u = el.  We suppose  

tha t  a is not  a Lorentz ian  circle in a plane z l  = D.  Then  a has an  arc  length 

pa ramet r i za t ion  of  the form: 

,~,(~) = a~, 

~2( , )  = ( , , ' , '  - 1/~) ~ s i ,a , (¢( , ) ) ,  

,~,( ,)  = ( , e , '  - I /c)  ~ cosh(¢( , ) ) ,  

where a > 0 and  ¢ is defined by 

1 / f "  (t ~ + ( a  2 -  1)1c) ~ 
¢( ' )  = 7 B "~= 7j7 at. 

Here 17 = 0 if a < 1 and B = ((1 - a2)/ca2) ~/2 if a > 1 and a is defined on 
V =  ]B,  oo[.  
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Case 3: c < 0 and (u, u) = 0. In this case we choose coordinates on R a such that 

u = e2 and such that the metric on R 3 takes the form 2dxldx2 + dx~. Then 

takes the form 

, , ( s )  = s, 

~(s) =- (s 2 + iic) ½ + sln ((-c)½s + (-cs 2- 1)½), 

a2(s) = (11c-~)1 (2s). 

Here a is defined on U = 1(11(-c))'12, oo [. 

Case 4: c < 0 and (u, u) < 0. In this case we can assume that u = e3. Then 

either a is a circle in a plane x3 = D, or 

~3(s) = as, 
1 

al(s)  = (ais 2 + I / c ) :  sin(¢(s)), 
1 

a~(s) = (a ' s '  + 1 / c ) •  cos(¢(s)) ,  

where a > 0 and ¢ now is defined by 

! 

1 L:* (52 + (a2  + 1 ) / c ) '  
¢ (s )  = a B t~ + 1/~ dr. 

Here B = ((I + a2)/(-ca2)) I/2 and a is defined on U = l B, oo [. 

Rotating helices: . We consider a linear subspace p s  in R n+2 like above, take a 

u-helix a on M'-'~(c) and rotate it around p2 = u ±. Therefore we have to assume 

that (¢x, u) # 0. Then the corresponding function p = (a, u) satisfies p = rs + f, 
where r and t are constant real numbers that don' t  vanish simultaneously. Then 

it follows from (2.1) and (2.2) that the shape operator takes the form (2) of 

Proposition 2.1. Hence we have a semi-parallel rotation hypersurfa~e. Moreover, 

we can notice that either M" is a cone, if r # 0, or M n is the product of an open 

interval U and a space of constant curvature M"- l (6 ) ,  if r = 0. In this last case, 

both principal curvatures are constant, so M n has parallel second fundamental 

form. 

3.  P r o o f  o f  t h e  T h e o r e m  

So let M "  be a hypersurface of M"+l(c) that  satisfies R -  h = 0. Since the 

principal curvature functions are continuous, it follows that U, defined by U = 
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M] U 342, whereby M1 = {p E M "  I A ~ p} and Mr = int {p e M "  I A = p}, is 

an open dense subset of M '~. Then A = p is a constant function on M2 and both  

A and p are differentiable on 3,/1. If M1 is empty, then M "  is totally umbilical 

and consequently M "  is parallel. If n = 2, then Ap + c = 0 implies that  34"1 is 

flat. Since the Gaussian curvature is continuous and constant  on both  M1 and 

Mr,  we obtain that  M r is flat. Hence we assume that  M1 is not empty, and we 

restrict our at tention to an arbi t rary connected component of M1, also denoted 

by M1. We recall that  on M] it holds that  Ap q- c = 0. 

If rnA > 1 and rn~ > 1, then it is easy to show that  both A and p are constant 

and that  M1 is parallel; cf. JR, Proposition 4.4]. So we suppose that  rn~ = 1 

and mj, = n -  1 > 1. 

Then [CD, theorem 4.2] implies that ,  at least locally, M~ is a rotat ion hy- 

persurface. The profile curve o~ (an integral curve of TA) is a curve lying in 

a 2-dimensional totally geodesic subspace M2(c) of M"+~(c).  Let pa,  p2 ,  u 

and p be like in section 2. Now (2.1) and (2.2) imply that  p" = 0. Hence 

(u, a(s)) = As + B,  where A >_ 0 and B are constant real numbers and s is the 

arc length of (~ . Thus a is a u-helix in pa.  
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